The state in the copper samples on the pressure plate was determined by the reflection method with the
use of the results of [4]: p=368 kbar, D=5,15 km/sec, u=0.80 km/sec, p,=8.93 g/cm®. A flying indicator
was used for better observation of the motion of the surface. It was made of copper foil with a thickness of
0.03 mm and was attached to the sample surface by rubbing it on VM-4 oil. The measurements were carried
out with an S1-24 oscilloscope. The supply source was a 10-uF capacitor, which was discharged into the sen~
sing element circuit with a limiting resistance R = 400Q. The inifial resistance of the elements in the test was
10-12 Q,

The initial data and experimental results are summarized in Table 1. Also given in the table is the re-
sult of Al'tshuler et al. [1], which exhibits good agreement with our result.

It is evident from the given example that the proposed method can be used successfully in investigations
of the properties of materials under high pressures. The application of the proposed method affords the pos-
sibility of determining unloading angles in complex shock waveforms and of determining wave profiles.
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ASYMPTOTIC OF THE FLOW IN THE NEIGHBORHOOD
OF A CENTER DURING COLLAPSE OF A SPHERICAL CAVITY

Ya., M. Kazhdan UDC 533.21

1. The problem of the collapse of a spherical cavity is examined in [1, 2] and the limit mode for gas
flow outside the cavity in the neighborhood of the center is presented as the cavity radius tends to zero R— 0.7
The equation of state of the gas in the customary notation has the form

2
p= o2 (85 —1), (1.1)

where p is the pressure, p is the density, 6 =p/p, cisthe speed of sound, S in an entropy quantity, and the sub-
script 0 corresponds to the unperturbed state. The flow up to the time of collapse was assumed isentropic
8=8; in the approximation under consideration. Zero pressure; and therefore, constant, nonzero specific den~

. L
sity & = 6y and speed of sound c,/V5 , corresponded to the cavity boundary, where 8¢Sy = 1. Without limiting
the generality, it can be considered that 8;=8 ;=1 and, correspondingly, the sound speed on the free boundary
equals ¢y because the gasdynamics equations in combination with the equation of state {1.1) are invariant rela-
tive to a similarity transformation:

r=rgr, t =, u = uyit, & = §;8, § = §,8,

where

Uy = Tolty; 8oy = 1; uy = 1/1/5,.

* All the personal references associated with the self-similar solution of the appropriate problem are pre-
sented in [1]. '
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It is well known from tests and numerical computations that high densities, and correspondingly pressures,
ocecur in the neighborhood of the center as R—0. Hence the equation of state (1.1) was replaced by the equa-
tion of state of a polytropic gas :

Poca8*s (1.2)
e

in obtaining the principal term of the flow asymptotic as R — 0.1t was assumed that the desired limit mode is
independent of the initial data. In such a formulation, the problem was reduced to finding the self-similar
solution of the gasdynamic equations corresponding to spherical symmetry and satisfying the boundary condi-
tions on the free surface:

dR (1.3)

where u is the velocity and t the time measured from the instant of collapse.

Because of (1.2), the zero density, and therefore, the zero speed of sound, correspond to the zero pres-
sure, Therefore the speed of sound on the free boundary in the self-similar solution found, which is the prin-
cipal term of the asymptotic in the neighborhood of the center as R—0, was different by the finite constant ¢,
in the initial formulation of the problem.

The second member of the asymptotic in the neighborhood of the center as R—0 is written down in this
paper. The sum of the first two terms of the asymptotic turns out to be sufficient to obtain the given speed of
sound ¢, in the asymptotic of the free boundary corrected by the second term as R—0. Hence, as before, the
flow during collapse is assumed isentropie,

2. Because of the isentropicity of the flow in the equation of state (1.1) or (1.2), the gasdynamics equa-
tions corresponding to spherical symmetry can be represented as follows:

24 o4 pP-d? _aP—pt
T teeg =" @ thEy =%

where A and B are Riemann invariants, and « and 8 are slopes of the characteristics

A=u-}——%—i——1—c,. ‘ B=u—;‘—_2‘%1c. (2.1)
We seek the asymptotic of the flow as R—0 in the form
A= Llo®+ra @, B=L[6®+ ) (2.2)
where
E= gt (2.3)

The line £ =const=1 corresponds to the free surface in a self-similar flow, as can be seen by selecting the
constant £ ; in an appropriate manner.

In the approximation proposed, the equation of the free boundary is represented in the form
E=1-+gRM, (2.4

Because of (1.1), the conditions on the free boundary are rewritten from (1.3) in the form

2L R o (8) = b0 (®) + B [0y () — by B~ cor (2.5)

(1= 2 ef) % (0 ® + b ® + B (0@ + b O

as R—0.

3. The functions ay(£) and by(¢ ) are the principal terms of the asymptotic corresponding to the self-
similar flow and are determined by the system of ordinary differential equations

da, 22—t hay—(h+1)ad—(h—2ab +b2
k§75§0‘= Z(h—l)——hao-(h_z)booo ., (3.1)
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. db,
B g =

2 (b — 1) kby — (b + 1) B — (b — 2) a b, + a3 (h," R+1) 3.1)

Zh—1)— kb, — (h—2)q, %—1

The boundary conditions are 1mposed on the free surface to which the line £ =1 corresponds, and on the line
¢ =0 corresponding to a focusing slit.

As already noted, the sound of speed on the free boundary is zero in the self-similar solution. Hence, it
follows from (1.3), (2.1) and (2.2) that for £ =1

ap(1) = by{1) = 1, (3.2)
while it follows from the condition of finitenes_s of the function on the focusing slit that for £ =0
a(0) = y(0) =0. | (3.3)

As is known [1], the index k in the representation (2.4) cannot be determined from dimensional considerations
but is found from the conditions for the existence of a solution of the system (3.1) which satisfies the boundary
conditions (3.2) and (3.3). The desired integral curve should hence pass through the singularity of the system
(3.1):

E=h O<bi<) o) = 3"—,,—2’“’—‘&—‘) 3.9)

bo(B2) =7 Ll (b= 2k — 1) 4+ 2h — V(b — 2 (k — 1)— 2T —16(h—1)].

For values of the polytropic index % belonging to the range 0< % < 8.47, the singularity at this point is of node
type. Hence, for these values of % it turns out that the possible values of k fill the whole band whose ends are
determined by the polytropic index ®., However, the solutions undergoing a weak discontinuity on the line ¢ =
¢ | corresponding to the characteristic arriving at the center at the time of collapse correspond to almost all
of them. Because a weak discontinuity at the characteristic mentioned does not correspond to the physical
formulation of the problem, "analytic" indices, i.e,, those to which analytic solutions correspond, are taken
as the desired values of the self-similarity index k. However it turns out that this requirement does not as-
sure uniqueness of the solution; a discrete set of "analytic" indices exists J1].

The quantity k henceforth corresponds to some fixed "analytic" index of self-similarity for a given poly-
tropic index n.

The asymptotic of the functions ay(¢ ) and by(¢ ) as £ —1 can be obtained from (3.1) and conditions (3.2):

Vz(h_1)(k_1(1—§)+_2_ﬂ:l)"_—(_’1i9_(1——§)s
i k

% & ~ (3.5)
/20— (k—1D(1—E 2 h—4)k— (h+42
bo(E)zi-{—}’ ( )(k ) ( )+h+1( ) k( )(1___§)
and as £ —0
a5(E) = Rof, bo(8) =~ Qok. {3.8)
4. The functions ay(£) and b,(£ ) are determined by the equations
q'lg(i_xz—iao_S;—ubo)_al[i_yz—i(k%- a:,g)
. ~ ; - . ’ »
““;:V( ~ay+ 2 O)_,, “‘J‘M‘[g A(T}"‘“og)"xzk bﬂ]""O’

4.1)

b (L= b — 2] = B[t — 2 (o b.,z)

1 1 3— — 1 3— —1
— —Ifc-v(x'*‘ b + % ) uzk—b"]—{—al[ 4"( bog) 2k ao]=0.

The values § =1, £ =£, and £ =0 will be singular points for this system. To obtain the asyinptotic of the func-
tions a4 (£ ) and by(¢) in the neighborhood of these values the coefficients for these functions and their deriva-
tives in system (4.1) are replaced by their expansions in the neighborhood of these values,

If the appropriate coefficients of system (4.1) are replaced by the first terms of their expansions in the

neighborhood of the value £ =1 by using the asymptotic (3.5), then the corresponding equations will have the
form
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—1 ’ 1 — _ . —
U —ha=tta p 25ty Eola gy o 2w, g xbl, (4.2)

from which

db, (k+1)b+B—1a
day T @—mby (e Day

The general solution of this equation will be
by — ay = C(by + a)®-12, (4.3)
The system (4.2) does not possess a bounded solution for £ =1, except the trivial a; =h,;= 0, Indeed, it is nec-

essary that g (1)=b(1) =0 for the solution to be bounded at £ =1. Substituting b, ~a; or b; ~— a; in (4.2) accord-
ing to the solution (4.3), we obtain in the first case

@~ Cl — E);i/(x;i)’ by~ C( — E)— =),
and in the second
a, & D(1 — &)~12, by &~ —D(l — g)-12,

For n =3 the following asymptotics are possible: '
a = C(1 — §)712, by = Cy(1 — E)-172,
where, in general, C, #* C,. Because of taking account of the next terms in the expansions of the coefficients of
system (4.1), the asymptotic of the general solution of this system will appear as follows in the neighborhood
of the value £ =1:
a, &~ M1 — B)—Vo—0 | K(1 — By—a2—D 4 ... 4+ N1 — E)-172,
by~ M1 — E)—110—0 — K(1 — gyo—sre—0 + . .. — N — §=12 for %3,
o~ Myl — 1, by~ My(t — B2 for =3,

(44)

24—

— h—1)k—(h 2
where K — 2M [2—% ( 1) - (h + v+

2—% % k
the coefficient of bj¢ vanishes. Since the functions ao(¢) and by(£ ) are analytic in the neighborhood of the value
¢ =£,, then the equations

]; M, N, My, M, are arbitrary constants. For ¢ =4

. , A+5C
d~aB+bD, batthe

E—§,
are obtained as a result of replacing the coefficients of system (4.1) by the first terms of their expansions in
the neighborhood of £ |, where A, B, C, D are constants determined by the self-similar solution, The solution
of system (4.1), which is bounded in the neighborhood of the line £ =£ ;, exists under the condition

ay(E)A + by(E)C = 0. (4.5)

Two analytic integral curves of system (4.1) issue from the point &, a;(£ (), b;(¢{ ;). One corresponds to the
solution £ = §;and lies in the plane @b, and the second corresponds to the curve L which tends to infinity as
£ —1 in conformity with the asymptotic (4.4). Because of the linearity and homogeneity of system (4.1), the
two integral curves corresponding to different solutions of (4.5) differ by a constant factor.

According to (3.3) for £ =0 the functions ay(¢), by(§ ) vanish. Hence, it follows from system (4.1) that
the functions @4(£ ) and b,(£ ) also vanish for £ =0 according to the asymptotic

a,(E) = RyE, 0,(5) = &, (4.6)
where R; and Q, are constants,

5. According to the asymptotics (3.4) and (4.4) obtained, the conditions (2.5) on the free boundary appear
as follows:

1
— - — D (kE—1) (1 — minf ——, (x—3)/2(%—1) ]
%4]‘:’1 Rl kgu{ 2V2(h )( = )( g) RVO[(i E) ( 2 ) } Cor

R v v R 2 (h—Dk—(h+2) 4 _n\—e—Dpv) § ;
A=) s R+ - (1—8 + M-y IR for R0
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(2M and 3N are replaced by M; +M, and M, — M, for »). Taking (2.4), the equation of the free boundary into
account, these conditions will be satisfied if and only if

Vo= d v
T u—1

vy (x—3)v,

Yt
- SE=T) )>_2-, here, then

Since v -} min (——

—_—1 . . —_—
= 2:4)501/ 2 (% k1)(k Dog—cyy v=2(k—1); (5.1)
| i = Dk — (- 2 g+ M (— g =0, (5.2)

The constants g, and M, satisfying (5.1) and (5.2) determine the desired solutionsra,k(g) and by (¢). Indeed,
as £ —1 the asymptotic of the integral curve of system (4.1) emerging from the point £, , ay£1)s b(§), where
a1 (€ ;) and by(£ () are any values satisfying condition (4.5), is determined by {4.4). The desired solution is ob-
tained as a result of multiplying the values a;(£1)and b,(¢ ) by a constant factor My/M, for »# 3 and 2My/M, +
M, for n =3, as is possible because of the homogeneity and linearity of system (4.1). The solution obtained
can be continued into the interval £ ,> £ > 0, where the functions § — 0 and @,(£) vanish as b;(¢) according to
the asymptotic (4.6).

6. In constructing the self-similar solution corresponding to the flow after the time of collapse, it should
be kept in mind that the self-similar solution cannot be continued continuously into the whole neighborhood of
the center for t> 0. A reflected shock issuing from the center occurs to which the ¢ = £ = const corre-
sponds because of self-similarity. Hence, the shock velocity D is determined by the formula

D = r/kt.

The velocity and the speed of sound in the self-similar flow are represented according to (2.2} in the
form

w7z wmNE =Ty w6
From the condition on the shock front

Por DUy = 1 U4 (5e)
P DUy 1-Uy (gs)

(the second 0 subscript corresponds to the value of the function ahead of the front, and the 1 to behind the front)
it follows that the ratio of the densities is constant on the front, Since the speed of sound is not zero ahead of
the front, then the ratio of the speeds of sound will also be constant, The ratio of the entropy quantities will
also be constant because of the equation of state (1.2). The entropy ahead of the front was constant, it will
therefore be constant in the self-similar flow and behind the shock.

Equations for the functions Uy(¢ ) and Cy(€ ) follow from system (3.1)

Colh—1)Cy (k—Ty) — 300Uo] —(1— Uy) {Ug +(k—1) Cg - ka]
Cy (1~ ) [+ =) (k= Ty — 30,1 =[T, (T, — B+ (h— GG}

au
’d—%‘.’:(h-—-i)

(6.1)
45 K [O,3U14C, —~ (h—1) (i — )]
@, €, [BU—Gh—-1)(Ek=0T)]
and conditions on the shock front have the form
1= Uy (Ba) _ Cho(ba) + %[t —Uay Gl _ (%4 1) [t == Ty (5)] Chy (B) + 06— 1) [1 = Uy (E)] Cho (i) 6.2)

I Ua G O G R =Ty (BIF T () [ Uy (Ba)] Oy (Ba) + (D) (1= Uy ()1 O3 o)

The line § =~ corresponds to the center r = 0,t> 0. Sincethe velocity is zero at the center, and the speed
of sound is finite, then Cy(—e) > Uy(— ). Takingthisinto account, the asymptotic of the functions can be ob~
tained from (6.1) as {—~—

Uo & Ay + A(—E)7*%, Co 0 Fo(—E)Yk -+ Fy(—E)=Hk, (6.3)
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where 4y=—+(h—1)(k—1); 4, =‘_(__—5<’F22—('°—‘—-1) F, —“% The constant F, is determined from

merging the solutions ahead of the shock front by conditions (6.2). The shock front is found as follows. The
integral curves of the first equation of system (6.1) are determined: L, leaving the point U;=C,=0 towards
Cy>0 in a direction determined by the asymptotic (3.6):

au B+ @

Uy=Co=0, gb=(—1)p=gh

and L, leaving the point U, = (1/3)(h — 1)(k—1), Cy=». The curve Ly (Uy = f(Cy)) is constructed accordingto
(6.2) from values of the quantities on the integral curve 1;,. The point of intersection of the curves L, and L,
corresponds to values of the functions Uy(£p) and Cy () on the shock front. The quadrature realized accord-
ing to the second equation of system (6.1) determines the value of the quantity & p and the constant F; in the
asymptotic (6.3). The value of the entropy S behind the shock front is determined by the formula

M —U, \*1c2
S =8,= (1_[]01) ot

00

7. The second term of the asymptotic as t> 0 can be obtained as a continuous continuation of the solu-
tion found in See. 5 to just the value £ ={p corresponding to the reflected shock front in the self-similar solu-
tion, Taking account of the second term of the asymptotic, the line

E =& +dr

will correspond to the reflected shock front, The flow behind‘the shock front will already not be isentropic in
the approximation under consideration, The desired functions (there are now three, the velocity u, the speed
of sound c, and the entropy S) are represented in the form

= [Uo ® + rvUI (E)a, o= 1o (8) + 1€y (B}, (7.1)
§= So 14ms; (E)/So}'
Before the front S, =Sy, =1 is constant; behind the front

S =S = 1- Uoo ()7 001 (5n)
° N R Ga) | % (Es)

00"

The equations for the functions U,(£ ), C{(£ ) and 5,(¢{ ) have the form

(1 —U)UE— (h——1)CC E+f‘———10 s+ vy, +(h—1)(2+"c -cog) —(TE+-10)U, =0,

’ ’ — fe h 2 4
CULE — (b~ 1) (1 —Uy) €t — [FE2EXE=Vy,  u— 1) g ¢, — [2EEE2C, —u— 1y Cig| v, = 0, (7:2)

IE+( U[’])kS.l:O'

The solutions of (7.2) should satisfy the requirement

U, () G, () 'S, (8)

1 fi
7% e % e o0 o >0

t—0and —® < £ < ‘EB' Two solutions satisfying this requirement exiét:
{U1a(8), C1a(8), S1a(8)}, {U1s(8), C1s(E), S1a(8)}-
To the accuracy of a constant, the first is extracted by the asymptotic for & — —,

U1a(®) = By(—E)F~¥*, Cia & Ba(—E)FTV/E - Dy(—E)B-,

Sia & By(—E)F 4 Dy(—EB-2/h, (7.3)
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where p= ——3v(—’(’;1+)(1(“k;-1;—), and the constants B;j, Dj are connected by the following relationships:

B,—tup
2 2% 3
KB, (k— Aj) (kB — 2) — 10KBF (24,F; — AF) — 10 (2 +v— &) A2F,F, 2
2 10 (2 + v — kP) AEF2 2

kB (k— 4,)

Dy=—-—_"9p,
3 1or2  7?

_ [h—1) (v—#B) + 5] 4,8, ~2(h—1) (1 — 4,) D,

a *p—v—0F, .

{(7.4)

B,

In the second solution the function is 51]3(‘5 )= 0, and the functions UIB(E y and Cyg(£) tend to infinity as & — —w
in conformity with the asymptotics:

Usn(8) & Ly(—E)"%, Cra 0 Lo(—E)0+WE, (7.5)
The coefficients L; and L, are connected by the relationship
h—-1)v 7.8) -
Ll = —(—-TF—— LZ' (

Q

The asymptotics, and therefore, the solutions themselves because of the linearity, are determined to the ac-
curacy of a constant. For definiteness, we set By=1 in (7.3) and (7.4), and L, =1 in (7.5) and (7.6). The desired
solution is a linear combination of the solutions of the system (7.2} which have the asymptotics (7.3) and (7.5)
as § — —

(ULE), C1(®), S1(8)} = 01{Usal®): C1a(®), S1a(®)} + 2:{Uns(8), Cual®), Suul®)}.

The constants qi, qi, and d are determined by conditions on the shock front. Since the shock velocity in the
approximation under consideration has the form

r 7 vd
D= 76?[1 - I-c—g;rv]q
then the relationships between the second terms on the shock front are represented by three equations

v ’ b ’
(la'ihvol)d'!'Un—_(kEB_*_Uoo)d+Ulo'_ M+ 1o+ (1)

1=l =l DO (=T =) C (1= Ty)

. (—1Dat(x+1)p _ 20y (C(’md + C1o) +x% {(1 — Ugo) [(Utl)l —Upy) d+ Uy = Um]
(=1 Ch (1 — Uy + (x4 1) C%() (1—0Uq) Coo+x(1— Vo) (Ut — Ugo)

(v , .
Uy — T Ui d+U ’ ' oy
B o1 = Ygo) [(kgn + 00) , m.}} s (Cmd + cu) o [2 (Cmd 0 Cod+Ch Y Sy

Cho + % (1 — Upgg) (Uyy — Upg) Cn ) x—1 Cox Coo / SUIJ ’

a=2(Cud+Cy) (1 —Ugo) — C%l[(;:g—n + U(;O)d + Um},;

B =2(Chod + Cro) (1 — Ugy) — Clo {(,E + U{u) -+ Un],

where Uy, Cyg, Sgp,Uygs Cygs Syg are values of the self-similar solution and the second approximation ahead of the
shock front and Uy, Cyy, Sy, Uyy, Cyy, Syy are, correspondingly, behind the shock front for £ = £p and the prime
denotes the derivative with respect to £ at ¢ = £p. As aresult of the substitution

Uy = qiU1a(&) + 0.Uss(Es), Crq = 71C1a(Es) + 2C1x(8s),
Su = ¢;81a&s) + 728 15(Es)

a system of linear inhomogeneous equations with three unknowns gy, 94, and d is obtained. The coefficients
of these equations are smooth functions of the index ® and the self-similarity index k and can be obtained only
by numerical integration, hence it should be expected that the determinant of the system is different from zero
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in the general case, as is confirmed by a numerical counting of the individual variants. If the determinant of
the system should happen to equal zero, then perhaps it would be for exceptional values of » and k. The set-
up of the shock front and finding the gasdynamic functions behind it in a second approximation is terminated
completely by the determination of q, q,, and d.

It follows from the asymptotic formulas (7.3) and (7.5) and the representation of the functions that the
values of the additions for the velocity and the entropy at the center (r=0, t=0) are zero,

Lutskii performed a numerical computation of the second term of the asymptotic for values of the
index » =3 (k=1.411332, v =1,233996, v, =0.822664). Values of the constant coefficients are obtained as a re-
sult of numerical integration for the asymptotic formulas (2.4}, (2.2) and (7.1) governing the shape of the free
boundary, the shock front, and the values of the gasdynamic functions as r—0, t—0: The equation of the free
boundary is

2
ta Lrh[i —3.417 ;—grﬁ],

~ 5 :
the values of the gasdynamic functions on the slit are
1=k cz v
u = Eyri—k| 0.5150 4- 9.463§—g r'},

3
¢ A —Erimh [0.5480 +8.514 % r”],

0

the equation of the shock front is
i » cg v
tx+r | —0.6132 4 6.8502 " |,
& 134
* and the values of the gasdynamic functions on the shock front are

' 3
ur — Egrich [0.1926 - 7.219% r”],

0

8 c3
¢ ~ —Eri-k [ 1,371 4 40.01 E‘;_r" , S~1.2049+ 5.1547?3 r.
0 0

The author is grateful to 1. M, Gel'fand who proposed execution of this research, and to A, E. Lutskii
for performing the tedious computations,
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